Erbium Boride

CAS #:

Linear Formula:

ErB4

MDL Number:

N/A

EC No.:

235-578-5

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Erbium Boride
ER-B-02
Pricing > SDS > Data Sheet >
(3N) 99.9% Erbium Boride
ER-B-03
Pricing > SDS > Data Sheet >
(4N) 99.99% Erbium Boride
ER-B-04
Pricing > SDS > Data Sheet >
(5N) 99.999% Erbium Boride
ER-B-05
Pricing > SDS > Data Sheet >

Erbium Boride Properties (Theoretical)

Compound Formula B4Er
Molecular Weight 210.503
Appearance Gray to black powder or crystals
Melting Point 2450 °C
Boiling Point N/A
Density 7 g/cm3
Solubility in H2O N/A
Exact Mass N/A
Monoisotopic Mass N/A
Charge N/A

Erbium Boride Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Erbium Boride

Boride IonErbium Boride is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Borides are hard, high-melting materials with metal-like conductivity. They are stable to nonoxidizing acids but break down in strong oxidizing agents and strong alkalis. Borides are used in semiconductors, superconductors, diamagnetic, paramagnetic, ferromagnetic, anti-ferromagnetic, turbine blades, and rocket nozzles. Borides have recently been discovered to be superconductive and ultra-incompressible. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Erbium Boride Synonyms

Erbium tetraboride , Erbium boride (ErB4), (T-4)-

Chemical Identifiers

Linear Formula ErB4
MDL Number N/A
EC No. 235-578-5
Beilstein/Reaxys No. N/A
Pubchem CID N/A
IUPAC Name N/A
SMILES N/A
InchI Identifier InChI=1/3B4O7.2Er/c3*5-1-7-3-9-2(6)10-4(8-1)11-3;;/q3*-2;2*+3
InchI Key N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Erbium

See more Erbium products. Erbium (atomic symbol: Er, atomic number: 68) is a Block F, Group 3, Period 6 element with an atomic radius of 167.259. Erbium Bohr ModelThe number of electrons in each of Erbium's shells is [2, 8, 18, 30, 8, 2] and its electron configuration is [Xe]4f12 6s2. The erbium atom has a radius of 176 pm and a Van der Waals radius of 235 pm. Erbium was discovered by Carl Mosander in 1843. Sources of Erbium include the mineral monazite and sand ores. Erbium is a member of the lanthanide or rare earth series of elements.Elemental Erbium Picture In its elemental form, erbium is soft and malleable. It is fairly stable in air and does not oxidize as rapidly as some of the other rare earth metals. Erbium's ions fluoresce in a bright pink color, making them highly useful for imaging and optical applications. It is named after the Swedish town Ytterby where it was first discovered.

TODAY'S TOP DISCOVERY!

November 26, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions