1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate

(R,R)-Et-DUPHOS-Rh

CAS #:

Linear Formula:

C31H48F3O3P2RhS

MDL Number:

MFCD00269860

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
>98% 1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate
RH-OMX-018
Pricing > SDS > Data Sheet >

1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate Properties (Theoretical)

Compound Formula C31H48F3O3P2RhS
Molecular Weight 722.63
Appearance Orange Powder
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass 724.196303
Monoisotopic Mass 724.196303
Charge 1

1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate Health & Safety Information

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Statements 26-36/37
RTECS Number N/A
Transport Information N/A
WGK Germany 3
MSDS / SDS

About 1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate

1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

1,2-Bis[(2R,5R)-2,5-diethylphospholano]benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate Synonyms

(R,R)-Et-DUPHOS-Rh, (-)-1,2-Bis((2R,5R)-2,5-diethylphospholano)benzene(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate

Chemical Identifiers

Linear Formula C31H48F3O3P2RhS
MDL Number MFCD00269860
EC No. N/A
Beilstein/Reaxys No. N/A
Pubchem CID 51003673
SMILES CC[C@H]1P2([Rh+]P3([C@@H](CC[C@H]3CC)CC)c4c2cccc4)[C@@H](CC1)CC.C1/C=C\CC/C=C\C1.C(S(=O)(=O)[O-])(F)(F)F
InchI Identifier InChI=1S/C22H36P2.C8H12.CHF3O3S.Rh/c1-5-17-13-14-18(6-2)23(17)21-11-9-10-12-22(21)24-19(7-3)15-16-20(24)8-4;1-2-4-6-8-7-5-3-1;2-1(3,4)8(5,6)7;/h9-12,17-20H,5-8,13-16H2,1-4H3;1-2,7-8H,3-6H2;(H,5,6,7);/q;;;-1/p+1/b;2-1-,8-7-;;/t17-,18-,19-,20-;;;/m1.../s1
InchI Key XWAOXAJIMCSCTH-KYOOHHHUSA-O

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Rhodium

See more Rhodium products. Rhodium (atomic symbol: Rh, atomic number: 45) is a Block D, Group 9, Period 5 element with an atomic weight of 102.90550. Rhodium Bohr ModelThe number of electrons in each of Rhodium's shells is [2, 8, 18, 16, 1] and its electron configuration is [Kr] 4d8 5s1. The rhodium atom has a radius of 134 pm and a Van der Waals radius of 195 pm. Rhodium was discovered and first isolated by William Wollaston in 1804. In its elemental form, rhodium has a silvery white metallic appearance. Elemental RhodiumRhodium is a member of the platinum group of metals. It has a higher melting point than platinum, but a lower density. Rhodium is found in ores mixed with other metals such as palladium, silver, platinum, and gold. Rhodium is primarily used as the catalyst in the three-way catalytic converters of automobiles it is also highly valued in jewelry. The name Rhodium originates from the Greek word 'Rhodon,' which means rose.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

TODAY'S TOP DISCOVERY!

November 05, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions