Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method.

Title Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method.
Authors W. Cui; P. Li; Z. Wang; S. Zheng; Y. Zhang
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.07.073
Abstract

MgO nanosheets with thickness ranges of 3-10 molecule layers and high specific area (166.44m2g-1) were successfully fabricated by an ultrasound-assisted exfoliation method and used as adsorbent for the removal of both selenite (Se(IV)) and selenate (Se(VI)) from aqueous solutions. The resulting MgO nanosheets displayed high maximum adsorption capacities of 103.52 and 10.28mgg-1 for Se(IV) and Se(VI), respectively. ATR-FTIR and XPS spectroscopic results suggested that both Se(IV) and Se(VI) formed inner-sphere surface complexes on MgO nanosheets under the present experimental conditions. Furthermore, high adsorption capacity for Se(IV/VI) in the presence of coexistent anions (SO42-, PO43-, Cl-, and F-) and efficient regeneratability of adsorbent by NaOH solution were observed in the competitive adsorption and regeneration steps. The simple one-step synthesis process of MgO nanosheets and high adsorption capacities offer a promising method for Se(IV/VI) removal in water treatment.

Citation W. Cui; P. Li; Z. Wang; S. Zheng; Y. Zhang.Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method.. J Hazard Mater. 2018;341:268276. doi:10.1016/j.jhazmat.2017.07.073

Related Elements

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications