An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon.

Title An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon.
Authors S.M. Alshehri; A.N. Alhabarah; J. Ahmed; M. Naushad; T. Ahamad
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.12.020
Abstract

The development of efficient, cost-effective and long-lived electro-catalyst is necessary for the realization of practically viable water-splitting systems. A trifunctional electrocatalyst for water splitting (hydrogen evolution, oxygen reduction and oxygen evolution reaction, HER/ORR/OER) was designed via eco-friendly and facial way. CoFe2O4 nanoparticles embedded in nitrogen doped mesoporous carbon were prepared using chicken egg white/albumin after pyrolysis at different temperatures, 700, 800, 900 and 1000?°C. The specific surface area, pore size and the interaction between CoFe2O4 nanoparticles and carbon matrix were tuned via pyrolysis temperature. The catalyst prepared at 900?°C, (N/CF-EC-900) exhibit superior catalytic activity as well as the superior stability than that other nanocomposites prepared and other commercial catalyst (Pt/C, RuO2) for water splitting. Our findings emphasize the importance of CoFe2O4 nanoparticles embedded in the carbon and suggest the catalytic activities with low onset potential, high current densities, small Tafel slope in basic medium.

Citation S.M. Alshehri; A.N. Alhabarah; J. Ahmed; M. Naushad; T. Ahamad.An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon.. J Colloid Interface Sci. 2018;514:19. doi:10.1016/j.jcis.2017.12.020

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications