An efficient ordered mesoporous molybdate-zirconium oxophosphate solid acid catalyst with homogeneously dispersed active sites: Synthesis, characterization and application.

Title An efficient ordered mesoporous molybdate-zirconium oxophosphate solid acid catalyst with homogeneously dispersed active sites: Synthesis, characterization and application.
Authors Z. Miao; Z. Li; D. Liu; J. Zhao; L. Chou; J. Zhou; S. Zhuo
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2018.04.107
Abstract

Ordered mesoporous molybdate-zirconium oxophosphate (M-ZrPMo) solid acid catalysts with controllable molybdenum contents (0-20%) are designed and synthesized through a one-pot evaporation-induced self-assembly strategy. Afterwards, ordered mesostructure and molybdenum species in the materials are systematically researched by a variety of means. The results show that M-ZrPMo has highly ordered mesoporous structure with large specific surface area (?200?m·g), big pore volume (?0.30?cm·g) and pore size (?6.5?nm). Additionally, ordered mesoporous structure of M-ZrPMo can be efficiently preserved even treated at 700?°C, presenting an outstanding thermal stability. Meanwhile, the molybdenum species are introduced as designed and homogeneously dispersed in mesoporous framework even at molybdenum content up to 20%. More importantly, the Brønsted and Lewis acidic properties of these materials are successfully enhanced with the introduction of molybdenum species. Meantime, the M-ZrPMo is employed as a solid acid catalyst for alkylation of aromatic compounds and esterification of levulinic acid with 1-butanol. The effect of molybdenum contents and calcination temperature on catalytic performance is thoroughly discussed. The excellent activity and reusability suggested that M-ZrPMo is a promising solid acid catalyst.

Citation Z. Miao; Z. Li; D. Liu; J. Zhao; L. Chou; J. Zhou; S. Zhuo.An efficient ordered mesoporous molybdate-zirconium oxophosphate solid acid catalyst with homogeneously dispersed active sites: Synthesis, characterization and application.. J Colloid Interface Sci. 2018;526:145157. doi:10.1016/j.jcis.2018.04.107

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Related Forms & Applications