An in vitro study on the efficacy of removing calcium hydroxide from curved root canal systems in root canal therapy.

Title An in vitro study on the efficacy of removing calcium hydroxide from curved root canal systems in root canal therapy.
Authors Y. Wang; L.Y. Guo; H.Z. Fang; W.L. Zou; Y.M. Yang; Y. Gao; H. Yang; T. Hu
Journal Int J Oral Sci
DOI 10.1038/ijos.2017.14
Abstract

To compare the efficacy of various irrigants (citric acid, ethylenediaminetetraacetic acid (EDTA) and NaOCl) and techniques in removing Ca(OH)2 in two types of curved root canal systems, simulated root canals with specific curvatures were used to investigate the effects of different irrigants and instruments on Ca(OH)2 removal. The optimal methods were verified on extracted human teeth. Simulated root canals were assigned to one of two groups based on the irrigation solution: 10% citric acid or 2.5% NaOCl. Each group was divided into four subgroups according to the technique used to remove Ca(OH)2. The percentage of Ca(OH)2 removal in different sections of root canals was calculated. On the basis of the results obtained for the simulated canals, 10% citric acid and 17% EDTA were applied to remove Ca(OH)2 from the extracted human teeth with curved root canal systems. The teeth were scanned by micro computed tomography to calculate the percentage of Ca(OH)2 removal in the canals. In simulated root canals, we found that 10% citric acid removed more Ca(OH)2 than 2.5% NaOCl in the 0-1?mm group from the apex level (P<0.05). Ultrasonic and EndoActivator activation significantly removed more Ca(OH)2 than a size 30?K file in the apical third (P<0.05). However, there were no significant differences in any sections of the canals for 10% citric acid or 17% EDTA in removing Ca(OH)2 in extracted human teeth. We concluded that it was effective to remove residual Ca(OH)2 using the decalcifying solution with EndoActivator or Passive Ultrasonic Irrigation in a curved root canal system. A protocol for Ca(OH)2 removal was provided based on the conclusions of this study and the methods recommended in previous studies.

Citation Y. Wang; L.Y. Guo; H.Z. Fang; W.L. Zou; Y.M. Yang; Y. Gao; H. Yang; T. Hu.An in vitro study on the efficacy of removing calcium hydroxide from curved root canal systems in root canal therapy.. Int J Oral Sci. 2017;9(2):110116. doi:10.1038/ijos.2017.14

Related Elements

Calcium

See more Calcium products. Calcium (atomic symbol: Ca, atomic number: 20) is a Block S, Group 2, Period 4 element with an atomic weight of 40.078. The number of electrons in each of Calcium's shells is [2, 8, 8, 2] and its electron configuration is [Ar]4s2. Calcium Bohr ModelThe calcium atom has a radius of 197 pm and a Van der Waals radius of 231 pm. Calcium was discovered and first isolated by Sir Humphrey Davy in 1808. It is the fifth most abundant element in the earth's crust and can be found in minerals such as dolomite, gypsum, plagioclases, amphiboles, pyroxenes and garnets. In its elemental form, calcium has a dull gray-silver appearance. Calcium is a reactive, soft metal that is a member of the alkaline earth elements. Elemental CalciumIt frequently serves as an alloying agent for other metals like aluminum and beryllium, and industrial materials like cement and mortar are composed of calcium compounds like calcium carbonate. It is also an biologically essential substance found in teeth, bones, and shells. The name "calcium" originates from the Latin word "calics," meaning lime.

Related Forms & Applications