Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films.

Title Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films.
Authors T.In Kim; B. Kwon; J. Yoon; I.J. Park; G.Sook Bang; Y.K. Park; Y.S. Seo; S.Y. Choi
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.6b12464
Abstract

Two-dimensional (2D) nanomaterials, such as graphene-based materials and transition metal dichalcogenide (TMD) nanosheets, are promising materials for biomedical applications owing to their remarkable cytocompatibility and physicochemical properties. On the basis of their potent antibacterial properties, 2D materials have potential as antibacterial films, wherein the 2D nanosheets are immobilized on the surface and the bacteria may contact with the basal planes of 2D nanosheets dominantly rather than contact with the sharp edges of nanosheets. To address these points, in this study, we prepared an effective antibacterial surface consisting of representative 2D materials, i.e., graphene oxide (GO) and molybdenum disulfide (MoS2), formed into nanosheets on a transparent substrate for real device applications. The antimicrobial properties of the GO-MoS2 nanocomposite surface toward the Gram-negative bacteria Escherichia coli were investigated, and the GO-MoS2 nanocomposite exhibited enhanced antimicrobial effects with increased glutathione oxidation capacity and partial conductivity. Furthermore, direct imaging of continuous morphological destruction in the individual bacterial cells having contacts with the GO-MoS2 nanocomposite surface was characterized by holotomographic (HT) microscopy, which could be used to detect the refractive index (RI) distribution of each voxel in bacterial cell and reconstruct the three-dimensional (3D) mapping images of bacteria. In this regard, the decreases in both the volume (67.2%) and the dry mass (78.8%) of bacterial cells that came in contact with the surface for 80 min were quantitatively measured, and releasing of intracellular components mediated by membrane and oxidative stress was observed. Our findings provided new insights into the antibacterial properties of 2D nanocomposite film with label-free tracing of bacterial cell which improve our understanding of antimicrobial activities and opened a window for the 2D nanocomposite as a practical antibacterial film in biomedical applications.

Citation T.In Kim; B. Kwon; J. Yoon; I.J. Park; G.Sook Bang; Y.K. Park; Y.S. Seo; S.Y. Choi.Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films.. ACS Appl Mater Interfaces. 2017;9(9):79087917. doi:10.1021/acsami.6b12464

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications