Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy.

Title Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy.
Authors J.M. Millward; A.Ariza de Schellenberger; D. Berndt; L. Hanke-Vela; E. Schellenberger; S. Waiczies; M. Taupitz; Y. Kobayashi; S. Wagner; C. Infante-Duarte
Journal Neuroscience
DOI 10.1016/j.neuroscience.2017.12.014
Abstract

Our recent studies demonstrated that electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) are promising MRI probes for detecting various pathological aspects of autoimmunity in the central nervous system (CNS). However, investigation of the precise tissue and cellular distribution of VSOP has been technically limited due to the need to use iron detection methods for VSOP visualization. Therefore, we assessed here the utility of europium (Eu)-doped VSOP as an MRI tool for in vivo investigations in the animal model experimental autoimmune encephalomyelitis (EAE), and as a tool to investigate histopathological processes in the CNS using fluorescence microscopy. We demonstrated that Eu-VSOP display the same properties as VSOP in terms of revealing inflammation-mediated changes by binding to brain endothelium in vitro, and in terms of visualizing brain lesions in EAE in vivo. MRI examinations with Eu-VSOP confirm that at peak disease particles accumulated inside the choroid plexus, and in cerebellar and meningeal lesions. Importantly, Eu-VSOP-based MRI showed for the first time in a longitudinal setup that particles were absent from the choroid plexus in mice during remission of EAE, but accumulated again during subsequent relapse. Within the choroid plexus, Eu-VSOP were associated both with monocytes/macrophages present in the plexus stroma, and associated with epithelial cells. Using Eu-VSOP, we demonstrated for the first time the involvement of the choroid plexus in relapses. Thus, Eu-VSOP have the potential to reveal various aspects of choroid plexus involvement in neuroinflammation, including monocyte recruitment from the blood and alterations of the choroid plexus epithelium.

Citation J.M. Millward; A.Ariza de Schellenberger; D. Berndt; L. Hanke-Vela; E. Schellenberger; S. Waiczies; M. Taupitz; Y. Kobayashi; S. Wagner; C. Infante-Duarte.Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy.. Neuroscience. 2017. doi:10.1016/j.neuroscience.2017.12.014

Related Elements

Europium

See more Europium products. Europium (atomic symbol: Eu, atomic number: 63) is a Block F, Group 3, Period 6 element with an atomic radius of 151.964. Europium Bohr ModelThe number of electrons in each of Europium's shells is 2, 8, 18, 25, 8, 2 and its electron configuration is [Xe]4f7 6s2. The europium atom has an atomic radius of 180 pm and a Van der Waals radius of 233 pm. Europium was discovered by Eugène-Anatole Demarçay in 1896, however, he did not isolate it until 1901. Europium was named after the continent of Europe.Elemental Europium Picture Europium is a member of the lanthanide or rare earth series of metals. In its elemental form, it has a silvery-white appearance but it is rarely found without oxide discoloration. Europium is found in many minerals including bastnasite, monazite, xenotime and loparite. It is not found in nature as a free element.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications