Assessing the Reliability of Material Flow Analysis Results: The Cases of Rhenium, Gallium, and Germanium in the United States Economy.

Title Assessing the Reliability of Material Flow Analysis Results: The Cases of Rhenium, Gallium, and Germanium in the United States Economy.
Authors G. Meylan; B.K. Reck; H. Rechberger; T.E. Graedel; O. Schwab
Journal Environ Sci Technol
DOI 10.1021/acs.est.7b03086
Abstract

Decision-makers traditionally expect "hard facts" from scientific inquiry, an expectation that the results of material flow analyses (MFAs) can hardly meet. MFA limitations are attributable to incompleteness of flowcharts, limited data quality, and model assumptions. Moreover, MFA results are, for the most part, based less on empirical observation but rather on social knowledge construction processes. Developing, applying, and improving the means of evaluating and communicating the reliability of MFA results is imperative. We apply two recently proposed approaches for making quantitative statements on MFA reliability to national minor metals systems: rhenium, gallium, and germanium in the United States in 2012. We discuss the reliability of results in policy and management contexts. The first approach consists of assessing data quality based on systematic characterization of MFA data and the associated meta-information and quantifying the "information content" of MFAs. The second is a quantification of data inconsistencies indicated by the "degree of data reconciliation" between the data and the model. A high information content and a low degree of reconciliation indicate reliable or certain MFA results. This article contributes to reliability and uncertainty discourses in MFA, exemplifying the usefulness of the approaches in policy and management, and to raw material supply discussions by providing country-level information on three important minor metals often considered critical.

Citation G. Meylan; B.K. Reck; H. Rechberger; T.E. Graedel; O. Schwab.Assessing the Reliability of Material Flow Analysis Results: The Cases of Rhenium, Gallium, and Germanium in the United States Economy.. Environ Sci Technol. 2017;51(20):1183911847. doi:10.1021/acs.est.7b03086

Related Elements

Gallium

See more Gallium products. Gallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia' referring to Gaul, the old name of France.

Germanium

See more Germanium products. Germanium (atomic symbol: Ge, atomic number: 32) is a Block P, Group 14, Period 4 element with an atomic weight of 72.63. Germanium Bohr ModelThe number of electrons in each of germanium's shells is 2, 8, 18, 4 and its electron configuration is [Ar] 3d10 4s2 4p2. The germanium atom has a radius of 122.5 pm and a Van der Waals radius of 211 pm. Germanium was first discovered by Clemens Winkler in 1886. In its elemental form, germanium is a brittle grayish white semi-metallic element. Germanium is too reactive to be found naturally on Earth in its native state. High Purity (99.999%) Germanium (Ge) MetalIt is commercially obtained from zinc ores and certain coals. It is also found in argyrodite and germanite. It is used extensively as a semiconductor in transitors, solar cells, and optical materials. Other applications include acting an alloying agent, as a phosphor in fluorescent lamps, and as a catalyst. The name Germanium originates from the Latin word "Germania" meaning "Germany."

Rhenium

See more Rhenium products. Rhenium (atomic symbol: Re, atomic number: 75) is a Block D, Group 7, Period 6 element with an atomic weight of 186.207. The number of electrons in each of rhenium's shells is 2, 8, 18, 32, 13, 2 and its electron configuration is [Xe] 4f14 5d5 6s2. Rhenium Bohr ModelThe rhenium atom has a radius of 137 pm and a Van der Waals radius of 217 pm. Rhenium was discovered and first isolated by Masataka Ogawa in 1908. In its elemental form, rhenium has a silvery-white appearance. Rhenium is the fourth densest element exceeded only by platinum, iridium, and osmium. Rhenium's high melting point is exceeded only by those of tungsten and carbon.Elemental Rhenium Rhenium is found in small amounts in gadolinite and molybdenite. It is usually extracted from the flue dusts of molybdenum smelters. The name Rhenium originates from the Latin word 'Rhenus' meaning "Rhine" after the place of discovery.