Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction.

Title Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction.
Authors H. Park; A. Encinas; J.P. Scheifers; Y. Zhang; B.P.T. Fokwa
Journal Angew Chem Int Ed Engl
DOI 10.1002/anie.201611756
Abstract

Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo2 B, ?-MoB, ?-MoB, and MoB2 by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB2 and ?-MoB show excellent activity in the same range as the recently reported ?-MoB and ?-Mo2 C phases, while the molybdenum richest phase Mo2 B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB2 and ?-MoB show long-term cycle stability in acidic solution.

Citation H. Park; A. Encinas; J.P. Scheifers; Y. Zhang; B.P.T. Fokwa.Boron-Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction.. Angew Chem Int Ed Engl. 2017;56(20):55755578. doi:10.1002/anie.201611756

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Related Forms & Applications