Boron Sub-2,3-naphthalocyanine Chloride

CAS #:

Linear Formula:

C36H18BClN6

MDL Number:

MFCD00209548

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Boron Sub-2,3-Naphthalocyanine Chloride
BO-S23NC-SG-P
Pricing > SDS > Data Sheet >

Boron Sub-2,3-naphthalocyanine Chloride Properties (Theoretical)

Compound Formula C36H18BClN6
Molecular Weight 580.83
Appearance Dark blue to black powder
Melting Point 270-276 °C
Boiling Point N/A
Density 1.561 g/cm3
Solubility in H2O N/A
Absorption λmax 673 nm
Exact Mass 580.137453
Monoisotopic Mass 580.137453

Boron Sub-2,3-naphthalocyanine Chloride Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information NONH for all modes of transport
WGK Germany 3
MSDS / SDS

About Boron Sub-2,3-naphthalocyanine Chloride

Boron Sub-2,3-naphthalocyanine Chloride is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Boron Sub-2,3-naphthalocyanine Chloride Synonyms

Sublimed grade Boron Sub-2,3-naphthalocyanine Chloride, Boron SubNC

Chemical Identifiers

Linear Formula C36H18BClN6
MDL Number MFCD00209548
EC No. N/A
Pubchem CID 28679127
IUPAC Name N/A
SMILES B1(N2C3=C4C=C5C=CC=CC5=CC4=C2N=C6N1C(=NC7=NC(=N3)C8=CC9=CC=CC=C9C=C87)C1=CC2=CC=CC=C2C=C16)Cl
InchI Identifier InChI=1S/C36H18BClN6/c38-37-43-33-27-15-21-9-3-5-11-23(21)17-29(27)35(43)42-36-30-18-24-12-6-4-10-22(24)16-28(30)34(44(36)37)41-32-26-14-20-8-2-1-7-19(20)13-25(26)31(39-32)40-33/h1-18H
InchI Key DNIVYCTVGAGXJP-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Recent Research

TODAY'S TOP DISCOVERY!

November 20, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions