Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries.

Title Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries.
Authors W. Dong; X. Huang; Y. Jin; M. Xie; W. Zhao; F. Huang
Journal Dalton Trans
DOI 10.1039/d0dt00901f
Abstract

Spinel lithium manganate (LiMn2O4) is a promising cathode for aqueous lithium-ion batteries (ALIBs). However, due to Mn dissolution and the Jahn-Teller effect it suffers from fast capacity fading, insufficient rate capability, and low overcharge resistance. Herein, a ?2-3 nm artificial solid electrolyte interphase (SEI) layer (lithium polyacrylate, LiPAA) is constructed on the commercial LiMn2O4 (LiPAA@LiMn2O4). It is realized by an in situ polymerization hydrothermal reaction using an acrylic monomer. This artificial SEI layer can separate the electrode and aqueous electrolyte, thus suppressing Mn dissolution and the Jahn-Teller effect of LiMn2O4. Electrochemical analyses also suggest it may work as the Li+ conductor/reservoir to improve the Li+ diffusion coefficient of the electrode. Consequently, as the cathode of ALIBs, LiPAA@LiMn2O4 harvests a high capacity of 119 mA h g-1 at 0.6C, high rate capability (70 mA h g-1 at 12C), better durability (85.5%@100 cycles) and superior overcharge resistance.

Citation W. Dong; X. Huang; Y. Jin; M. Xie; W. Zhao; F. Huang.Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries.. Dalton Trans. 2020. doi:10.1039/d0dt00901f

Related Elements

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Related Forms & Applications