Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation.

Title Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation.
Authors J.A. Rothman; L. Leger; J.S. Kirkwood; Q.S. McFrederick
Journal Appl Environ Microbiol
DOI 10.1128/AEM.01411-19
Abstract

Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees' metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants. Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees' microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media and suggest that bacteria may reduce metal burden in their hosts.

Citation J.A. Rothman; L. Leger; J.S. Kirkwood; Q.S. McFrederick.Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation.. Appl Environ Microbiol. 2019;85(21). doi:10.1128/AEM.01411-19

Related Elements

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Related Forms & Applications