Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells.

Title Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells.
Authors D. Zhou; D. Liu; G. Pan; X. Chen; D. Li; W. Xu; X. Bai; H. Song
Journal Adv Mater
DOI 10.1002/adma.201704149
Abstract

Quantum cutting can realize the emission of multiple near-infrared photons for each ultraviolet/visible photon absorbed, and has potential to significantly improve the photoelectric conversion efficiency (PCE) of solar cells. However, due to the lack of an ideal downconversion material, it has merely served as a principle in the laboratory until now. Here, the fabrication of a novel type of quantum cutting material, CsPbCl1.5 Br1.5 :Yb3+ , Ce3+ nanocrystals is presented. Benefiting from the larger absorption cross-section, weaker electron-phonon coupling, and higher inner luminescent quantum yield (146%), the doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs). Noticeably, the PCE of the SSCs is improved from 18.1% to 21.5%, with a relative enhancement of 18.8%. This work exhibits a cheap, convenient, and effective way to enhance the PCE of SSCs, which may be commercially popularized in the future.

Citation D. Zhou; D. Liu; G. Pan; X. Chen; D. Li; W. Xu; X. Bai; H. Song.Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells.. Adv Mater Weinheim. 2017;29(42). doi:10.1002/adma.201704149

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Ytterbium

See more Ytterbium products. Ytterbium (atomic symbol: Yb, atomic number: 70) is a Block F, Group 3, Period 6 element with an atomic weight of 173.054. Ytterbium Bohr ModelThe number of electrons in each of Ytterbium's shells is [2, 8, 18, 32, 8, 2] and its electron configuration is [Xe]4f14 6s2. The Ytterbium atom has a radius of 176 pm and a Van der Waals radius of 242 pm. Ytterbium was discovered by Jean Charles Galissard de Marignac in 1878 and first isolated by Georges Urbain in 1907.Elemental Ytterbium In its elemental form, ytterbium has a silvery-white color. Ytterbium is found in monazite sand as well as the ores euxenite and xenotime. Ytterbium is named after Ytterby, a village in Sweden. Ytterbium can be used as a source for gamma rays, for the doping of stainless steel, or other active metals. Its electrical resistivity rises under stress, making it very useful for stress gauges that measure the deformation of the ground in the even of an earthquake.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications