Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal.

Title Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal.
Authors Z. Yu; C. Xu; K. Yuan; X. Gan; C. Feng; X. Wang; L. Zhu; G. Zhang; D. Xu
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.12.024
Abstract

One-dimension ZrO2 mesoporous fibers were successfully synthesized by utilizing the electrospinning device combining with the soft-template method. The morphology and composite of the fibers were characterized by XRD, SEM, TEM, FT-IR, TGA/DSC and XPS, and the pore structure and surface area were calculated according the BET measured results. The fluoride adsorption performance of the fibers was investigated and the adsorption capacity was upto 297.70?mg?g-1. Moreover, the equilibrium concentration could be reached to 1.41?mg?L-1 with the initial of 30?mg?L-1, and the removal rate could be reached to 95.3%. The adsorption data were well fitted with the Freundlich isotherm model and pseudo-second-order kinetic model. The fibers had a good reusability and long-term utilization for fluoride adsorption. All the results suggested that the as-prepared ZrO2 mesoporous fibers with high surface area could be an excellent adsorbent for the wastewater defluoridation treatment.

Citation Z. Yu; C. Xu; K. Yuan; X. Gan; C. Feng; X. Wang; L. Zhu; G. Zhang; D. Xu.Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal.. J Hazard Mater. 2018;346:8292. doi:10.1016/j.jhazmat.2017.12.024

Related Elements

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Fluorine

Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.

Related Forms & Applications