Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

Title Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.
Authors B. J; S.M. G
Journal Int J Biol Macromol
DOI 10.1016/j.ijbiomac.2017.03.115
Abstract

The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO2 nanocomposite coating.

Citation B. J; S.M. G.Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.. Int J Biol Macromol. 2017;104(Pt B):17301739. doi:10.1016/j.ijbiomac.2017.03.115

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Related Forms & Applications