Clinical characteristics of zinc phosphide poisoning in Thailand.

Title Clinical characteristics of zinc phosphide poisoning in Thailand.
Authors S. Trakulsrichai; N. Kosanyawat; P. Atiksawedparit; C. Sriapha; A. Tongpoo; U. Udomsubpayakul; P. Rittilert; W. Wananukul
Journal Ther Clin Risk Manag
DOI 10.2147/TCRM.S129610
Abstract

OBJECTIVE: The objectives of this study were to describe the clinical characteristics and outcomes of poisoning by zinc phosphide, a common rodenticide in Thailand, and to evaluate whether these outcomes can be prognosticated by the clinical presentation.

MATERIALS AND METHODS: A 3-year retrospective cohort study was performed using data from the Ramathibodi Poison Center Toxic Exposure Surveillance System.

RESULTS: In total, 455 poisonings were identified. Most were males (60.5%) and from the central region of Thailand (71.0%). The mean age was 39.91±19.15 years. The most common route of exposure was oral (99.3%). Most patients showed normal vital signs, oxygen saturation, and consciousness at the first presentation. The three most common clinical presentations were gastrointestinal (GI; 68.8%), cardiovascular (22.0%), and respiratory (13.8%) signs and symptoms. Most patients had normal blood chemistry laboratory results and chest X-ray findings at presentation. The median hospital stay was 2 days, and the mortality rate was 7%. Approximately 70% of patients underwent GI decontamination, including gastric lavage and a single dose of activated charcoal. In all, 31 patients were intubated and required ventilator support. Inotropic drugs were given to 4.2% of patients. Four moribund patients also received hyperinsulinemia-euglycemia therapy and intravenous hydrocortisone; however, all died. Patients who survived and died showed significant differences in age, duration from taking zinc phosphide to hospital presentation, abnormal vital signs at presentation (tachycardia, low blood pressure, and tachypnea), acidosis, hypernatremia, hyperkalemia, in-hospital acute kidney injury, in-hospital hypoglycemia, endotracheal tube intubation, and inotropic requirement during hospitalization (P<0.05).

CONCLUSION: Zinc phosphide poisoning causes fatalities. Most patients have mild symptoms, and GI symptoms are the most common. Patients who present with abnormal vital signs or electrolytes might have more severe poisoning and should be closely monitored and aggressively treated. All patients should be observed in the hospital for 2 days and followed up for cardiovascular and respiratory symptoms, electrolyte balances, kidney function, and blood glucose.

Citation S. Trakulsrichai; N. Kosanyawat; P. Atiksawedparit; C. Sriapha; A. Tongpoo; U. Udomsubpayakul; P. Rittilert; W. Wananukul.Clinical characteristics of zinc phosphide poisoning in Thailand.. Ther Clin Risk Manag. 2017;13:335340. doi:10.2147/TCRM.S129610

Related Elements

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Related Forms & Applications