Cobalt Vanadium Sputtering Target

Linear Formula:

Co-V

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Cobalt Vanadium Sputtering Target
CO-V-02-ST
Pricing > SDS > Data Sheet >
(3N) 99.9% Cobalt Vanadium Sputtering Target
CO-V-03-ST
Pricing > SDS > Data Sheet >
(4N) 99.99% Cobalt Vanadium Sputtering Target
CO-V-04-ST
Pricing > SDS > Data Sheet >
(5N) 99.999% Cobalt Vanadium Sputtering Target
CO-V-05-ST
Pricing > SDS > Data Sheet >

Cobalt Vanadium Sputtering Target Properties (Theoretical)

Compound Formula CoV
Appearance Target
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Monoisotopic Mass 109.877 g/mol

Cobalt Vanadium Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Cobalt Vanadium Sputtering Target

American Elements specializes in producing high purity Cobalt Vanadium Sputtering Targets with the highest possible density High Purity (99.99%) Cobalt Vanadium Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. We offer all shapes and configurations of targets compatible with all standard guns including circular, rectangular, annular, oval, "dog-bone," rotatable (rotary), multi-tiled and others in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes. We also produce Cobalt as disc, granules, ingot, pellets, pieces, powder, and rod. Other shapes are available by request.

Cobalt Vanadium Sputtering Target Synonyms

CoV65, CAS 39416-94-9

Chemical Identifiers

Linear Formula Co-V
MDL Number N/A
EC No. N/A
Pubchem CID 57464724
IUPAC Name cobalt; vanadium
SMILES [V].[Co]
InchI Identifier InChI=1S/Co.V
InchI Key LLESOAREQXNYOK-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit."

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

TODAY'S TOP DISCOVERY!

December 26, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks