Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals.

Title Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals.
Authors Y. Dong; L. Zhang
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.03.034
Abstract

The different morphologies of magnetic nickel cobaltate (NiCo2O4) electrocatalysts, consisting of nanoparticles (NiCo2O4-N), nanoplates (NiCo2O4-P) and microspheres (NiCo2O4-S) were fabricated. It was found that the electrocatalytic properties of the sensing materials were strongly dependent on morphology and specific surface area. The porous NiCo2O4 hexagonal nanoplates coupled with ILs as modified materials (ILs@NiCo2O4-P) for the simultaneous determination of thallium (Tl(+)), lead (Pb(2+)) and copper (Cu(2+)), exhibited high sensitivity, long-time stability and good repeatability. The enhanced electrocatalytic activity was attributed to relatively large specific surface area, excellent electronic conductivity, and unique porous nanostructure. The analytical performance of the constructed electrode on detection of Tl(+), Pb(2+) and Cu(2+) was examined using differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the electrode showed a good linear response to Tl(+), Pb(2+)and Cu(2+) in the concentration range of 0.1-100.0, 0.1-100.0 and 0.05-100.0?g/L, respectively. The detection limits (S/N=3) were 0.046, 0.034 and 0.029?g/L for Tl(+), Pb(2+) and Cu(2+), respectively. The fabricated sensor was successfully applied to detect trace Tl(+), Pb(2+) and Cu(2+) in various water and soil samples with satisfactory results. Hence, this work provided a promising material for electrochemical determination of cumulative toxic metals individually and simultaneously.

Citation Y. Dong; L. Zhang.Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals.. J Hazard Mater. 2017;333:2331. doi:10.1016/j.jhazmat.2017.03.034

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Related Forms & Applications