Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.

Title Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.
Authors E. Vathonne; D.A. Andersson; M. Freyss; R. Perriot; M.W.D. Cooper; C.R. Stanek; M. Bertolus
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.6b01560
Abstract

We present a study of the diffusion of krypton in UO2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT+U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and the interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential ?O or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO2, migration is assisted by the bound Schottky defect and the charged uranium vacancy, VU(4-). Around stoichiometry, migration assisted by the charged uranium-oxygen divacancy (VUO(2-)) and VU(4-) is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two VU(4-) dominates. Kr migration is enhanced at higher ?O, and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. The mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.

Citation E. Vathonne; D.A. Andersson; M. Freyss; R. Perriot; M.W.D. Cooper; C.R. Stanek; M. Bertolus.Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.. Inorg Chem. 2017;56(1):125137. doi:10.1021/acs.inorgchem.6b01560

Related Elements

Uranium

See more Uranium products. Uranium (atomic symbol: U, atomic number: 92) is a Block F, Group 3, Period 7 element. The number of electrons in each of Uranium's shells is 2, 8, 18, 32, 21, 9, 2 and its electronic configuration is [Rn] 5f3 6d1 7s2. In its elemental form uranium's CAS number is 7440-61-1. The uranium atom has a radius of 138.5.pm and its Van der Waals radius is 186.pm. Uranium is harmful both through its radioactivity and chemical toxicity. Uranium in its depleted and unenriched forms has numerous commercial applications due to its great density and its bright yellow-green color in glass and ceramics. Uranium Bohr ModelIts great density has found military applications in armor piercing armaments and in protective shielding. It is added to ceramic frits, glazes and to color bars for glass production because of its bright yellow shade. Uranyl Nitrate and Uranyl Acetate are used in medical and analytical laboratories. Uranium was discovered by Martin Heinrich Klaproth. The name Uranium originates from the planet Uranus. Uranium occurs naturally in soil, rock and water and is commercially extracted from uranium-bearing minerals.

Related Forms & Applications