Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: Mechanistic insights for enhanced chromate removal.

Title Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: Mechanistic insights for enhanced chromate removal.
Authors Q. Shao; C. Xu; Y. Wang; S. Huang; B. Zhang; L. Huang; D. Fan; P.G. Tratnyek
Journal Water Res
DOI 10.1016/j.watres.2018.02.030
Abstract

Recent research on contaminant removal by zerovalent iron (ZVI) has evolved from investigating simple model systems to systems that encompass increased dimensions of complexity. Sulfidation and aerobic conditions are two of the most broadly relevant complications. Combining these two, this study investigated the dynamic interactions between sulfidated microscale ZVI and dissolved O, for removal of Cr(VI), a model contaminant for metals and metalloids. The results show that the coupling of sulfidation and oxygenation significantly improves Cr removal, which is attributed to enhanced Fe(II) production that resulted from accelerated corrosion of Fe(0). The Cr(VI) removal rate increased with increasing O saturation from 0% to 100% but showed a bimodal dependence on the S/Fe ratio. At the optimal S/Fe ratio, the ZVI exhibits a highly porous surface morphology, which, according to prior literature on sulfur induced corrosion, promotes corrosion. In addition, a novel time series correlation was developed between aqueous Fe(II) and Cr(VI) based on data collected in the presence and absence of 1,10-phenanthroline, to probe for changes of reductants during the reaction time course. The analysis indicated that Fe(0) was responsible for the initial small amount of Cr(VI) removal, which then transitioned to a phase controlled by surface Fe(II). The slopes of the time series correlations during the latter phase of the reaction vary with experimental conditions but are mostly much higher than the theoretical stoichiometric ratio between Cr(VI) and Fe(II) (i.e., 0.33), indicating that Fe(II) regeneration contributes significantly to Cr removal.

Citation Q. Shao; C. Xu; Y. Wang; S. Huang; B. Zhang; L. Huang; D. Fan; P.G. Tratnyek.Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: Mechanistic insights for enhanced chromate removal.. Water Res. 2018;135:322330. doi:10.1016/j.watres.2018.02.030

Related Elements

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Chromium

See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Louis Nicolas Vauquelin first discovered chromium in 1797 and first isolated it the following year. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metallic element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it transforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma.' meaning color.

Related Forms & Applications