Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide.

Title Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide.
Authors H. Yang; X. Lu; M. He
Journal Environ Technol
DOI 10.1080/09593330.2017.1332107
Abstract

Antimony (Sb) is of increasing environmental concern worldwide. The sorption behavior of Sb was investigated. Both Sb(III) and Sb(V) were likely to be sorbed onto nanocrystalline titanium dioxide (TiO). Sorption studies showed that the Sb(V) sorption capacity and rate for TiO were greater than those of Sb(III). The highest Sb(III) and Sb(V) sorption on TiO, on the basis of the Langmuir equation, were 333 and 588?mmol?kg, respectively. The study suggested that TiO is an effective adsorbent for Sb removal. In addition, Sb mobilization in the presence of humic acid (HA) was found to be highly pH-dependent. For pH values of 9-11, the addition of HA enhanced Sb mobilization significantly. The results highlight the importance of organic matter in the mobilization of Sb in alkaline-contaminated environments.

Citation H. Yang; X. Lu; M. He.Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide.. Environ Technol. 2018;39(12):15151521. doi:10.1080/09593330.2017.1332107

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications