Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor.

Title Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor.
Authors Y. Xu; C. Wang; J. Hou; P. Wang; G. You; L. Miao; B. Lv; Y. Yang
Journal Bioresour Technol
DOI 10.1016/j.biortech.2016.12.041
Abstract

The short term (8h) influences of cerium oxide nanoparticles (CeO2NPs) on the process of phosphorus removal in biofilm were investigated. At concentration of 0.1mg/L, CeO2 NPs posed no impacts on total phosphorus (TP) removal. While at 20mg/L, TP removal efficiency reduced from 85.16% to 59.62%. Results of P distribution analysis and (31)P nuclear magnetic resonance spectroscopy implied that the anaerobic degradation of polyphosphate (polyP) and the release of orthophosphate in extracellular polymeric substances (EPS) were inhibited. After aerobic exposure, the average chain length of polyP in microbial cells and EPS was shorter than control, and monoester and diester phosphates in cells were observed to release into EPS. Moreover, the EPS production and its contribution to P removal increased, while the capacity of EPS in P storage declined. X-ray diffraction analysis and saturation index calculation revealed that the formation of inorganic P precipitation in biofilm was inhibited.

Citation Y. Xu; C. Wang; J. Hou; P. Wang; G. You; L. Miao; B. Lv; Y. Yang.Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor.. Bioresour Technol. 2017;227:393397. doi:10.1016/j.biortech.2016.12.041

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications