Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1.

Title Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1.
Authors Y. Wang; G. Zhao; X. Li; L. Liu; W. Cao; Q. Wei
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.10.042
Abstract

In this work, a highly-efficient competitive method-based electrochemiluminescence (ECL) immunosensor was proposed based on {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (Cu/Ni/Ru) as luminophor to efficiently detect aflatoxins B1 (AFB1). Cu/Ni/Ru exhibited excellent ECL behavior. While polyethyleneimine capped silicon dioxide (PEI@SiO2) could decrease the ECL performance of Cu/Ni/Ru due that PEI could destroy the structure of Cu/Ni/Ru via producing the complex between PEI and metal ions (Cu(II)/Ni(II)), inducing the release of Ru(bpy)32+. Since Au nanoparticles can directly combine with antibody and antigen, the Cu/Ni/Ru and PEI@SiO2 was functionalized by Au nanoparticles. The quantitative detection of AFB1 was based on the competitive binding between AFB1-bovine serum albumin labeled Au-PEI@SiO2 (Au-PEI@SiO2-AFB1-BSA) and free AFB1 with antibody-AFB1 which immobilized on Au-Cu/Ni/Ru. The ECL signal increased with augmenting the concentrations of the free AFB1 due to less Au-PEI@SiO2-AFB1-BSA combining with antibodies. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 0.01ngmL-1 to 100ngmL-1 with a detection limit of 0.0039ngmL-1 (S/N = 3). The proposed immunosensor also provides a promising approach for ultrasensitive detection of other mycotoxins.

Citation Y. Wang; G. Zhao; X. Li; L. Liu; W. Cao; Q. Wei.Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1.. Biosens Bioelectron. 2018;101:290296. doi:10.1016/j.bios.2017.10.042

Related Elements

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Ruthenium

See more Ruthenium products. Ruthenium (atomic symbol: Ru, atomic number: 44) is a Block D, Group 8, Period 5 element with an atomic weight of 101.07. Ruthenium Bohr ModelThe number of electrons in each of ruthenium's shells is [2, 8, 18, 15, 1] and its electron configuration is [Kr] 4d7 5s1. The ruthenium atom has a radius of 134 pm and a Van der Waals radius of 207 pm. Ruthenium was discovered by Jędrzej Śniadecki in 1807. It was first recognized as a distinct element by Karl Ernst Claus in 1844. Elemental RutheniumIn its elemental form, ruthenium has a silvery white metallic appearance. Ruthenium is a rare transition metal belonging to the platinum group of metals. It is found in pentlandite, pyroxenite, and platinum group metal ores. The name Ruthenium originates from the Latin word "Ruthenia," meaning Russia.

Related Forms & Applications