Enhanced adsorption of bromate from aqueous solutions on ordered mesoporous Mg-Al layered double hydroxides (LDHs).

Title Enhanced adsorption of bromate from aqueous solutions on ordered mesoporous Mg-Al layered double hydroxides (LDHs).
Authors H. Ji; W. Wu; F. Li; X. Yu; J. Fu; L. Jia
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.04.014
Abstract

An ordered mesoporous Mg-Al layered double hydroxide (meso-LDH350) with a fairly high Brunauer-Emmett-Teller (BET) surface area (126m(2)g(-1)) has been facilely synthesized and then evaluated for the adsorptive removal of bromate from aqueous solutions. Adsorbents were characterized by a variety of techniques (e.g., XRD, FTIR, SEM, TG-DSC, N2 physisorption, XPS, etc.). The adsorption studies indicated that the presence of background electrolytes and competitive anions can obviously repress the uptake of bromate on LDHs. The adsorption isotherms agree well with the Langmuir model, giving a maximum adsorption capacity of 59.34mgg(-1) (pH 7.5, 10°C) for meso-LDH350, which is much higher than other LDH-type adsorbents reported in literature. The adsorption kinetic data can be well fitted with the pseudo-second-order rate model. Based on the macroscopic and microscopic studies, bromate adsorption on meso-LDH350 was associated with two mechanisms: the reconstruction of the layered structures of meso-LDH350 and the anion-exchange between bromate and the intercalated anions.

Citation H. Ji; W. Wu; F. Li; X. Yu; J. Fu; L. Jia.Enhanced adsorption of bromate from aqueous solutions on ordered mesoporous Mg-Al layered double hydroxides (LDHs).. J Hazard Mater. 2017;334:212222. doi:10.1016/j.jhazmat.2017.04.014

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Bromine

See more Bromine products. Bromine (atomic symbol: Br, atomic number: 35) is a Block P, Group 17, Period 4 element. Its electron configuration is [Ar]4s23d104p5. The bromine atom has a radius of 102 pm and its Van der Waals radius is 183 pm. In its elemental form, bromine Bromine Bohr Model has a red-brown appearance. Bromine does not occur by itself in nature; it is found as colorless soluble crystalline mineral halide salts. Bromine was discovered and first isolated by Antoine Jérôme Balard and Leopold Gmelin in 1825-1826.

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications