Enhanced biosafety of silica coated gadolinium based nanoparticles.

Title Enhanced biosafety of silica coated gadolinium based nanoparticles.
Authors M. Laranjeira; Y. Shirosaki; S.Yoshimatsu Yasutomi; T. Miyazaki; F.Jorge Monteiro
Journal J Mater Sci Mater Med
DOI 10.1007/s10856-017-5855-1
Abstract

One of the most important and novel approaches of biomedical engineering is the development of new, effective and non-invasive medical diagnosis abilities, and treatments that have such requirements as advanced technologies for tumor imaging. Gadolinium (Gd) compounds can be used as MRI contrast agents, however the release of Gd(3+) ions presents some adverse side effects such as renal failure, pancreatitis or local necrosis. The main aim of the work was the development and optimization of Gadolinium based nanoparticles coated with silica to be used as bioimaging agent. Gd based nanoparticles were prepared through a precipitation method and afterwards, these nanoparticles were covered with silica, using Stöber method with ammonia and functionalized with 3-Aminopropyltriethoxysilane (APTES). Results showed that nanoparticles were homogeneous regarding chemical composition, silica layer thickness, total size and morphology. Also, silica coating was successfully not degraded after 4 weeks at pH 5.5, 6.0 and 7.4, contrary to GdOHCO3 nanoparticles that degraded. Regarding the in vitro cell tests, very good cell proliferation and viability were observed. In conclusion, the results showed that Gd based nanoparticles coated with silica for imaging applications were successfully obtained under a well-controlled method. Furthermore, silica coating may enhance magnetic nanoparticles biosafety because it avoids GdOHCO3 degradation into harmful products (such as Gd(3+) ions) at physiological conditions.

Citation M. Laranjeira; Y. Shirosaki; S.Yoshimatsu Yasutomi; T. Miyazaki; F.Jorge Monteiro.Enhanced biosafety of silica coated gadolinium based nanoparticles.. J Mater Sci Mater Med. 2017;28(3):46. doi:10.1007/s10856-017-5855-1

Related Elements

Gadolinium

See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. Gadolinium Bohr ModelThe number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. Elemental Gadolinium PictureIt is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications