Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO2 and starch/CTAB/TiO2 nanoparticles: a comparative study.

Title Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO2 and starch/CTAB/TiO2 nanoparticles: a comparative study.
Authors P. Gogoi; D. Dutta; T.Kr Maji
Journal J Water Health
DOI 10.2166/wh.2016.127
Abstract

We present a comparative study on the efficacy of TiO2 nanoparticles for arsenate ion removal after modification with CTAB (N-cetyl-N,N,N-trimethyl ammonium bromide) followed by coating with starch biopolymer. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), thermogravimetry, scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDX). The removal efficiency was studied as a function of contact time, material dose and initial As(V) concentration. CTAB-modified TiO2 showed the highest arsenate ion removal rate (?99% from 400 ?g/L). Starch-coated CTAB-modified TiO2 was found to be best for regeneration. For a targeted solution of 400 ?g/L, a material dose of 2 g/L was found to be sufficient to reduce the As(V) concentration below 10 ?g/L. Equilibrium was established within 90 minutes of treatment. The sorption pattern followed a Langmuir monolayer pattern, and the maximum sorption capacity was found to be 1.024 mg/g and 1.423 mg/g after starch coating and after CTAB modification, respectively. The sorption mechanisms were governed by pseudo second order kinetics.

Citation P. Gogoi; D. Dutta; T.Kr Maji.Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO2 and starch/CTAB/TiO2 nanoparticles: a comparative study.. J Water Health. 2017;15(1):5871. doi:10.2166/wh.2016.127

Related Elements

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.

Related Forms & Applications