Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin.

Title Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin.
Authors N.Helen Ferreira; R.Andrade Furtado; A.Barcelos Ribeiro; P.Francielli de Oliveira; S.Duarte Ozelin; L.Daniela Ri de Souza; F.Rinaldi Neto; B.Ayumi Miura; G.Modé Magalhães; E.José Nassar; D.Crispim Tavares
Journal J Inorg Biochem
DOI 10.1016/j.jinorgbio.2018.01.014
Abstract

The aim of this study was to evaluate the antitumor efficiency of chemotherapy with cisplatin alone and incorporated into europium(III)-doped yttrium vanadate nanoparticles functionalized with 3?chloropropyltrimethoxysilane with folic acid and without folic acid in a syngeneic mouse melanoma model. Histopathological, biochemical and genotoxic analyses of treated animals were performed to assess the toxicity of treatments. The treatment of the animals with cisplatin alone and the nanoparticles functionalized with cisplatin at a dose of 5?mg/kg b.w. for 5?days reduced tumor weight about 86% and 65%, respectively. Histopathological analysis showed lower mean frequency of mitoses in tumor tissue of the groups receiving cisplatin alone (90% reduction) and the nanoparticles functionalized with cisplatin (70% reduction) compared to the tumor control group. A reduction in body and liver weight and an increase in serum creatinine and urea levels were observed in animals treated with CDDP, but not in those receiving the nanoparticles functionalized with cisplatin. Genotoxicity assessment by the comet assay revealed lower frequencies of DNA damage in animals treated with the nanoparticles functionalized with cisplatin (mean score?=?140.80) compared to those treated with cisplatin alone (mean score?=?231.80). Marked toxic effects were observed in animals treated with cisplatin alone, while treatment with the nanoparticles functionalized with cisplatin showed no toxicity. Moreover, folic acid in the inorganic nanoparticles reduced the genotoxicity of cisplatin in the bone marrow micronucleus test (10?±?1.4 and 40?±?0.0 micronucleus, respectively). These results demonstrate the antitumor efficiency and significantly reduced systemic toxicity of the nanoparticles compared to CDDP.

Citation N.Helen Ferreira; R.Andrade Furtado; A.Barcelos Ribeiro; P.Francielli de Oliveira; S.Duarte Ozelin; L.Daniela Ri de Souza; F.Rinaldi Neto; B.Ayumi Miura; G.Modé Magalhães; E.José Nassar; D.Crispim Tavares.Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin.. J Inorg Biochem. 2018;182:917. doi:10.1016/j.jinorgbio.2018.01.014

Related Elements

Europium

See more Europium products. Europium (atomic symbol: Eu, atomic number: 63) is a Block F, Group 3, Period 6 element with an atomic radius of 151.964. Europium Bohr ModelThe number of electrons in each of Europium's shells is 2, 8, 18, 25, 8, 2 and its electron configuration is [Xe]4f7 6s2. The europium atom has an atomic radius of 180 pm and a Van der Waals radius of 233 pm. Europium was discovered by Eugène-Anatole Demarçay in 1896, however, he did not isolate it until 1901. Europium was named after the continent of Europe.Elemental Europium Picture Europium is a member of the lanthanide or rare earth series of metals. In its elemental form, it has a silvery-white appearance but it is rarely found without oxide discoloration. Europium is found in many minerals including bastnasite, monazite, xenotime and loparite. It is not found in nature as a free element.

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Related Forms & Applications