Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light.

Title Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light.
Authors Y. Deng; L. Tang; G. Zeng; J. Wang; Y. Zhou; J. Wang; J. Tang; L. Wang; C. Feng
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.09.016
Abstract

To realize the sustainable employment of solar energy in contaminant degradation and environmental recovery, design and development of an efficient photocatalyst is urgently needed. Herein, a novel direct Z-scheme composite photocatalysts consist of phosphorous-doped ultrathin g-C3N4 nanosheets (PCNS) and bismuth vanadate (BiVO4) are developed via a one-pot impregnated precipitation method. The as-prepared hybrid nanocomposite was utilized for the degradation tetracycline (TC) under visible light irradiation. Among the composites with various PCNS/BiVO4 ratios, the prepared PCNS/BVO-400 photocatalyst presents the best performance, showing a TC (10mg/L) removal efficiency of 96.95% within 60min, more than double that of pristine BiVO4 (41.45%) and higher than that of pure PCNS (71.78%) under the same conditions. The effects of initial TC concentration, catalyst dosage, pH value and different water sources have been studied in detail. The improved photocatalytic performance of the as-prepared PCNS/BiVO4 nanocomposites could be attributed to the promoted separation efficiency of the photogenerated electrons and the enhanced charge carrier lifetime (1.65ns) owing to the synergistic effect between the PCNS and BiVO4. The degradation intermediates and decomposition pathway of TC were also analyzed and proposed. Additionally, radical trapping experiments and ESR measurement indicated that the photogenerated holes (h+), superoxide radical (O2-) and hydroxyl radical (OH) all participated in the TC removal procedure in the reaction system. The high performance of PCNS/BVO-400 in real wastewater indicated the potential of the prepared composite in practical application. This work provides an efficient and promising approach for the formation of high performance Z-scheme photocatalyst and study the possibility for real wastewater treatment.

Citation Y. Deng; L. Tang; G. Zeng; J. Wang; Y. Zhou; J. Wang; J. Tang; L. Wang; C. Feng.Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light.. J Colloid Interface Sci. 2018;509:219234. doi:10.1016/j.jcis.2017.09.016

Related Elements

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Related Forms & Applications