Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation.

Title Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation.
Authors M. Jourshabani; Z. Shariatinia; A. Badiei
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.07.106
Abstract

Porous CeO2/sulfur-doped g-C3N4 (CeO2/CNS) composites were synthesized by one-pot thermal condensation of thiourea and cerium nitrate as starting materials. The obtained CeO2(x)/CNS composites (x=8.4, 9.5 and 10.4wt%) with different CeO2 contents were characterized by the XRD, FT-IR, XPS, TEM, BET, DRS and PL analyses. The TEM images displayed a nonporous and platelet-like morphology for pure CNS but a nanoporous structure with numerous uniform pore sizes of ?40nm for the CeO2(9.5)/CNS composite. The XRD phase structures and TEM morphologies confirmed that structural evolution trend and stacking degree of CNS were disrupted in precense of the CeO2 nanoparticles. The optimized photocatalyst, i.e. CeO2(9.5)/CNS nanocomposite, exhibited the highest visible light photocatalytic activity (91.4% after 150min) with a reaction rate constant of 0.0152min(-1) toward methylene blue (MB) degradation which was greater compared with the individual CNS (0.0044min(-1)) and CeO2 (0.0031min(-1)) photocatalysts. This enhanced photocatalytic performance was originated from heterojunctions formed between CeO2 and CNS that improved the effective charge transfer through interfacial interactions between both components. The heterojunction prepared displayed excellent stability for the photocatalytic activity under the optimized conditions including catalyst dosage 0.08g, initial dye concentration 7mg/L and irradiation time 150min which was obtained using response surface methodology (RSM). The trapping experiments using isopropanol, benzoquinone and ethylenediaminetetraacetic as the OH, O2(-) and h(+) scavengers, respectively, verified that the OH and O2(-) as major species directly attacked onto the MB molecules while h(+) showed a negligible role. Finally, it could be stated that simultaneous doping of both sulfur and CeO2 within the g-C3N4 structure using a simple one-pot synthetic process produced very active photocatalysts illustrating their potential for practical applications in industrial water treatment purposes.

Citation M. Jourshabani; Z. Shariatinia; A. Badiei.Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation.. J Colloid Interface Sci. 2017;507:5973. doi:10.1016/j.jcis.2017.07.106

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications