Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst.

Title Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst.
Authors X. Li; H. Xue; H. Pang
Journal Nanoscale
DOI 10.1039/c6nr07680g
Abstract

Uniform and hollow rhombic dodecahedral, rhombic dodecahedral, spherical, and semi-hollow K3PW12O40·nH2O nanocrystals are fabricated without any surfactants or templating agents in mild hydrothermal conditions. The shape evolution and growth of these crystals are studied by changing different reaction parameters, such as the reagent, time and temperature. It is found that the temperature and time have significant effects on the possible growth processes of these nanostructures. More importantly, according to photocatalytic results, due to the specific nanostructure-hollow rhombic dodecahedral structure, the hollow rhombic dodecahedral K3PW12O40·nH2O particles with nanopores are shown to be the most effective at activating H2O2, degrading dye pollutants completely after 90 minutes of visible light radiation. What's more, the good recycle lifetime for the hollow rhombic dodecahedral K3PW12O40·nH2O particles makes them practical for industrial applications. Possible mechanisms for the photocatalysis reaction are further discussed.

Citation X. Li; H. Xue; H. Pang.Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst.. Nanoscale. 2017;9(1):216222. doi:10.1039/c6nr07680g

Related Elements

Potassium

Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

Related Forms & Applications