Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

Title Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.
Authors Y. Zhang; J. Xiao; Y. Sun; L. Wang; X. Dong; J. Ren; W. He; F. Xiao
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.09.038
Abstract

The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H2O2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H2O2, the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm-2mM-1. These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H2O2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management.

Citation Y. Zhang; J. Xiao; Y. Sun; L. Wang; X. Dong; J. Ren; W. He; F. Xiao.Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.. Biosens Bioelectron. 2018;100:453461. doi:10.1016/j.bios.2017.09.038

Related Elements

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Gold

See more Gold products. Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe]4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Gold is a soft metal and is usually alloyed to give it more strength.Elemental Gold It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold-silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium.

Related Forms & Applications