Fluorophores for Excited-State Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids.

Title Fluorophores for Excited-State Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids.
Authors S. Tong; S. Zhao; Q. He; Q. Wang; M.X. Wang; J. Zhu
Journal Angew Chem Int Ed Engl
DOI 10.1002/anie.201702488
Abstract

Discovery of new chemical reactivity of a given functional group can often result in innovative synthesis of important chemical entities that possess unprecedented properties. We designed and developed a one-step synthesis of 5-amino-4-carboxamidothiazoles 1 by an yttrium-triflate-catalyzed reaction of thiocarboxylic acids 2 with isocyanides 3. In this reaction, both reactants 2 and 3 deviated from their normal reactivities because of metal coordination. The resulting heterocycles are novel prototypical structures for the double ESIPT process. Some of them were excited by visible light irradiation and emitted fluorescence at the NIR region with large Stokes shift, high quantum yield, and strong solvatochromism.

Citation S. Tong; S. Zhao; Q. He; Q. Wang; M.X. Wang; J. Zhu.Fluorophores for Excited-State Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids.. Angew Chem Int Ed Engl. 2017;56(23):65996603. doi:10.1002/anie.201702488

Related Elements

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Fluorine

Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications