Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice.

Title Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice.
Authors M. Gao; J. Zhou; H. Liu; W. Zhang; Y. Hu; J. Liang; J. Zhou
Journal Sci Total Environ
DOI 10.1016/j.scitotenv.2018.03.047
Abstract

Foliar spraying with silicon (Si) and selenium (Se) can regulate the accumulation of cadmium (Cd) in rice (Oryza sativa L.), but the effects on different cultivars and the main determining factors remain unknown. Field experiments were conducted to investigate the ability of foliar spraying with Si, Se, and mixture of Si and Se to decrease Cd accumulation and translocation in rice cultivars WYHZ, NJ5055, and ZF1Y. All three spray treatments significantly decreased the Cd concentration in WYHZ brown rice, but had no such effect in NJ5055 or ZF1Y, relative to controls. WYHZ had a higher ability to translocate Cd than the other two cultivars. Foliar spraying changed this pattern by decreasing Cd translocation from roots to stems and from stems to brown rice, and increasing Cd translocation from stems to leaves. Foliar spraying also increased the photosynthetic rate, stomatal conductance, and transpiration efficiency in WYHZ. Structural equation modelling revealed the negative effects of photosynthetic rate, transpiration efficiency, and leaf Cd concentration, and the positive effects of stem and root Cd concentration on brown rice Cd concentration. Structural equation modelling further highlighted the significant role of stem Cd concentration in determining brown rice Cd concentration, which had the highest standardized total effects (direct plus indirect effects). These findings demonstrate that foliar spraying with Si and Se is effective in reducing Cd accumulation in rice cultivars with high Cd translocation ability, mainly by reducing stem Cd concentrations and ameliorating plant photosynthetic processes.

Citation M. Gao; J. Zhou; H. Liu; W. Zhang; Y. Hu; J. Liang; J. Zhou.Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice.. Sci Total Environ. 2018;631-632:11001108. doi:10.1016/j.scitotenv.2018.03.047

Related Elements

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.