Gastric mucosal status susceptible to lanthanum deposition in patients treated with dialysis and lanthanum carbonate.

Title Gastric mucosal status susceptible to lanthanum deposition in patients treated with dialysis and lanthanum carbonate.
Authors S. Ban; S. Suzuki; K. Kubota; S. Ohshima; H. Satoh; H. Imada; Y. Ueda
Journal Ann Diagn Pathol
DOI 10.1016/j.anndiagpath.2016.10.001
Abstract

Lanthanum carbonate is a popular chemical which is administered for patients with end-stage kidney disease to reduce the absorption of phosphate, and lanthanum deposition in the gastroduodenal mucosa has recently been reported. The aim of this study was to assess whether any histologic changes of the gastric mucosa are related to the deposition of lanthanum. Twenty-four patients who revealed the histology of lanthanum deposition on gastroduodenal biopsy between 2011 and 2014 were included in the study, and their clinical records and gastroduodenal biopsies obtained from 2011 to 2015 were reviewed, adding the review of gastroduodenal biopsies before 2011 if possible. Analysis of the deposited materials by scanning electron microscopy-energy dispersive x-ray spectroscopy was performed for a representative gastric biopsy. All patients were diagnosed as having renal insufficiency due to chronic kidney disease and treated with dialysis for more than 5 years, with confirmation of lanthanum carbonate use for 22 patients. Of 121 gastric biopsies and 10 duodenal ones between 2011 and 2015, 86 gastric biopsies (71.1%) and 3 duodenal biopsies (30%), respectively, revealed histology consistent with lanthanum deposition, which was confirmed by scanning electron microscopy-energy dispersive x-ray spectroscopy analysis for a representative case. The deposition tended to occur in the gastric mucosa with regenerative change, intestinal metaplasia, or foveolar hyperplasia (P<.05). Such mucosal changes were observed in about half of the gastric biopsy samples obtained prior to 2010, in which no lanthanum deposition was identified irrespective of the gastric mucosal status. Although direct association between lanthanum deposition and clinical symptoms is not clear, the evaluation of the gastric mucosal status (prior to administration) seems to be important to predict lanthanum deposition when lanthanum carbonate is administered for patients with chronic kidney disease treated with dialysis.

Citation S. Ban; S. Suzuki; K. Kubota; S. Ohshima; H. Satoh; H. Imada; Y. Ueda.Gastric mucosal status susceptible to lanthanum deposition in patients treated with dialysis and lanthanum carbonate.. Ann Diagn Pathol. 2017;26:69. doi:10.1016/j.anndiagpath.2016.10.001

Related Elements

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications