Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene.

Title Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene.
Authors Y. Shi; B. Yu; L. Duan; Z. Gui; B. Wang; Y. Hu; R.K.K. Yuen
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.03.006
Abstract

Graphitic carbon nitride/organic aluminum hypophosphites (g-C3N4/OAHPi) hybrids, i.e., CPDCPAHPi and CBPODAHPi, were synthesized by esterification and salification reactions, and then incorporated into polystyrene (PS) to prepare composites through a melt blending method. Structure and morphology characterizations demonstrated the successful synthesis of PDCPAHPi, BPODAHPi and their hybrids. The g-C3N4 protected OAHPi from external heat and thus improved the thermal stability of OAHPi. Combining g-C3N4 with OAHPi contributed to reduction in peak of heat release rate, total heat release and smoke production rate of PS matrix. Reduced smoke released has also been demonstrated by smoke density chamber testing. Additionally, introduction of the hybrids led to decreased release of flammable aromatic compounds. These properties improvement could be attributed to gas phase action and physical barrier effect in condensed phase: phosphorus-containing low-energy radicals generated from OAHPi effectively captured high-energy free-radicals evolved from PS; g-C3N4 nanosheets retarded the permeation of heat and the escape of volatile degradation products. Therefore, g-C3N4/OAHPi hybrids will provide a potential strategy to reduce the fire hazards of PS.

Citation Y. Shi; B. Yu; L. Duan; Z. Gui; B. Wang; Y. Hu; R.K.K. Yuen.Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene.. J Hazard Mater. 2017;332:8796. doi:10.1016/j.jhazmat.2017.03.006

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications