Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features.

Title Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features.
Authors J.J. Li; M. Tian; Z. Tian; S. Zhang; C. Yan; C. Shao; Z. Liu
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b01959
Abstract

A series of half-sandwich IrIII pentamethylcyclopentadienyl and RuII arene complexes containing P^P-chelating ligands of the type [(Cpx/arene)M(P^P)Cl]PF6, where M = Ir, Cpx is pentamethylcyclopentadienyl (Cp*), or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (CpxbiPh); M = Ru, arene is 3-phenylpropan-1-ol (bz-PA), 4-phenylbutan-1-ol (bz-BA), or p-cymene (p-cym), and P^P is 2,20-bis(diphenylphosphino)-1,10-binaphthyl (BINAP), have been synthesized and fully characterized, three of them by X-ray crystallography, and their potential as anticancer agents explored. All five complexes showed potent anticancer activity toward HeLa and A549 cancer cells. The introduction of a biphenyl substituent on the Cp* ring for the iridium complexes has no effect on the antiproliferative potency. Ruthenium complex [(?6-p-cym)Ru(P^P)Cl]PF6 (5) displayed the highest potency, about 15 and 7.5 times more active than the clinically used cisplatin against A549 and HeLa cells, respectively. No binding to 9-MeA and 9-EtG nucleobases was observed. Although these types of complexes interact with ctDNA, DNA appears not to be the major target. Compared to iridium complex [(?5-Cp*)Ir(P^P)Cl]PF6 (1), ruthenium complex (5) showed stronger ability to interfere with coenzyme NAD+/NADH couple through transfer hydrogenation reactions and to induce ROS in cells, which is consistent with their anticancer activities. The redox properties of the complexes 1, 5, and ligand BINAP were evaluated by cyclic voltammetry. Complexes 1 and 5 arrest cell cycles at the S phase, Sub-G1 phase and G1 phase, respectively, and cause cell apoptosis toward A549 cells.

Citation J.J. Li; M. Tian; Z. Tian; S. Zhang; C. Yan; C. Shao; Z. Liu.Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features.. Inorg Chem. 2018. doi:10.1021/acs.inorgchem.7b01959

Related Elements

Iridium

See more Iridium products. Iridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2. Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals.Elemental Iridium It is the most corrosion resistant metal known and is the second-densest element (after osmium). It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts.

Ruthenium

See more Ruthenium products. Ruthenium (atomic symbol: Ru, atomic number: 44) is a Block D, Group 8, Period 5 element with an atomic weight of 101.07. Ruthenium Bohr ModelThe number of electrons in each of ruthenium's shells is [2, 8, 18, 15, 1] and its electron configuration is [Kr] 4d7 5s1. The ruthenium atom has a radius of 134 pm and a Van der Waals radius of 207 pm. Ruthenium was discovered by Jędrzej Śniadecki in 1807. It was first recognized as a distinct element by Karl Ernst Claus in 1844. Elemental RutheniumIn its elemental form, ruthenium has a silvery white metallic appearance. Ruthenium is a rare transition metal belonging to the platinum group of metals. It is found in pentlandite, pyroxenite, and platinum group metal ores. The name Ruthenium originates from the Latin word "Ruthenia," meaning Russia.

Related Forms & Applications