Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium.

Title Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium.
Authors Y. Dai; R. Lv; J. Fan; H. Peng; Z. Zhang; X. Cao; Y. Liu
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2019.121467
Abstract

Owning to highly mechanical strength and non-interference effectivity, silica dioxide is often explored as a stable supporter commonly with mesopore. It is known that a macroporous framework has larger mass transfer channel, possibly beneficial to adsorption process. Herein highly ordered macroporous silica dioxide framework (homogeneous pore size of 194.20?nm) was synthesized and embedded with supramolecular (CC/OMS). Cs cation adsorption onto CC/OMS was explored under different pH (presence or absence of humic acid), initial cesium concentration, shaking time, competing ions. The robust cesium uptake capacity demonstrated by a theory adsorption amount of 150.01?mg/g highlighted unique CC/OMS properties combining large mass transfer channel and superior complex capacity of supramolecular. The adsorption was well fit with Langmuir and pseudo-second-order model. Sodium and potassium at a lower concentration showed little influence on cesium adsorption. The results demonstrated that CC/OMS was an alternative material for cesium capture from acidic aqueous solution.

Citation Y. Dai; R. Lv; J. Fan; H. Peng; Z. Zhang; X. Cao; Y. Liu.Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium.. J Hazard Mater. 2020;391:121467. doi:10.1016/j.jhazmat.2019.121467

Related Elements

Cesium

See more Cesium products. Cesium (or Caesium) (atomic symbol: Ce, atomic number: 55) is a Block S, Group 1, Period 6 element with an atomic weight of 132.9054519. The number of electrons in each of Cesium's shells is 2, 8, 18, 18, 8, 1 and its electron configuration is [Xe]6s1. Cesium Bohr ModelThe cesium atom has a radius of 265 pm and a Van der Waals radius of 343 pm. Cesium is a member of the alkali group of metals. It is one of three metals that occur as a liquid at room temperature, the others being mercury and gallium. Elemental CesiumCesium's main commercial source is pollucite ore; however, it is also found in beryl, avogadrite, pezzottaite, and londonite. Cesium was discovered by Robert Bunsen and Gustav Kirchhoff in 1860 and first isolated by Carl Setterberg in 1882. In its elemental form, cesium has a silvery gold appearance. The word Cesium originates from the Latin word "caesius," meaning "sky blue," which refers to the vibrant blue lines in its spectrum.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications