Holmium Stannate

CAS #:

Linear Formula:

Ho2Sn2O7

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Holmium Stannate
HO-STANAT-01-PE
Pricing > SDS > Data Sheet >

Holmium Stannate Properties (Theoretical)

Compound Formula Ho2Sn2O7
Molecular Weight 679.28
Appearance White pellets
Melting Point N/A
Boiling Point N/A
Density 7.858
Solubility in H2O N/A

Holmium Stannate Health & Safety Information

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Precautionary Statements P261-P302+P352-P305+P351+P338-P321-P405-P501
Risk Codes R36/37/38
Safety Statements S26-S37
RTECS Number N/A
Transport Information NONH for all modes of transport
GHS Pictograms
MSDS / SDS

About Holmium Stannate

American Elements manufactures Holmium Stannate in both research and bulk quantities. American Elements produces materials to many standard grades when applicable including Mil Spec (military grade), ACS, Reagent and Technical Grades; Food, Agricultural and Pharmaceutical Grades, Optical, Semiconductor, and Electronics Grades, and follows applicable USP, EP/BP, and ASTM testing standards. Most materials can be produced in high and ultra high purity forms (99%, 99.9%, 99.99%, 99.999%, and higher). Standard and custom packaging is available. Additional technical, research and safety (SDS) information is available. Please request a quote above to receive pricing information based on your specifications.

Holmium Stannate Synonyms

Holmium tin oxide, holmium(III) stannate

Chemical Identifiers

Linear Formula Ho2Sn2O7
MDL Number N/A
EC No. N/A
Pubchem CID N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Holmium

See more Holmium products. Holmium (atomic symbol: Ho, atomic number: 67) is a Block F, Group 3, Period 6 element with an atomic radius of 164.93032. Holmium Bohr ModelThe number of electrons in each of Holmium's shells is [2, 8, 18, 29, 8, 2] and its electron configuration is [Xe] 4f11 6s2. Elemental Holmium PictureThe holmium atom has a radius of 176 pm and its Covalent radius is 192±7 pm. Holmium was first discovered by Marc Delafontaine in 1878. In its elemental form, holmium has a silvery white appearance. It is relatively soft and malleable. It is stable in dry air at room temperature but rapidly oxidizes at elevated temperatures and in moist air. Holmium has unusual magnetic properties. Its name is derived from the Latin word Holmia meaning Stockholm.

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

TODAY'S TOP DISCOVERY!

November 21, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions