Hydrogen on Cobalt Phosphide.

Title Hydrogen on Cobalt Phosphide.
Authors M.F. Delley; Z. Wu; E. Mundy; D. Ung; B.M. Cossairt; H. Wang; J.M. Mayer
Journal J Am Chem Soc
DOI 10.1021/jacs.9b07986
Abstract

Cobalt phosphide (CoP) is one of the most promising earth-abundant replacements for noble metal catalysts for the hydrogen evolution reaction (HER). Critical to HER is the binding of H atoms. While theoretical studies have computed preferred sites and energetics of hydrogen bound to transition metal phosphide surfaces, direct experimental studies are scarce. Herein, we describe measurements of stoichiometry and thermochemistry for hydrogen bound to CoP. We studied both mesoscale CoP particles, exhibiting phosphide surfaces after an acidic pretreatment, and colloidal CoP nanoparticles. Treatment with H introduced large amounts of reactive hydrogen to CoP, ca. 0.2 H per CoP unit, and on the order of one H per Co or P surface atom. This was quantified using alkyne hydrogenation and H-atom transfer reactions with phenoxy radicals. Reactive H atoms were even present on the as-prepared materials. On the basis of the reactivity of CoP with various molecular hydrogen donating and accepting reagents, the distribution of binding free energies for H atoms on CoP was estimated to be roughly 51-66 kcal mol (?° ? 0 to -0.7 eV vs H). Operando X-ray absorption spectroscopy gave preliminary indications about the structure of hydrogenated CoP, showing a slight lattice expansion and no significant change of the effective nuclear charge of Co under H-flow. These results provide a new picture of catalytically active CoP, with a substantial amount of reactive H atoms. This is likely of fundamental relevance for its catalytic and electrocatalytic properties. Additionally, the approach developed here provides a roadmap to examine hydrogen on other materials.

Citation M.F. Delley; Z. Wu; E. Mundy; D. Ung; B.M. Cossairt; H. Wang; J.M. Mayer.Hydrogen on Cobalt Phosphide.. J Am Chem Soc. 2019;141(38):1539015402. doi:10.1021/jacs.9b07986

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications