Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications.

Title Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications.
Authors D.J. Fernandes; R.G. Marques; C.N. Elias
Journal J Mater Sci Mater Med
DOI 10.1007/s10856-017-5977-5
Abstract

The purpose of this work was to investigate the influence of acid treatment on the surface properties and in vivo performance of titanium grade 5 (Ti6Al4V) alloy. Mini-implants with surface treatment were inserted into New Zealand rabbit tibia for 1, 4 and 8 weeks. SEM analysis showed intercommunicated micropores in acid treated samples. AFM showed micron and sub-micron roughness. The thickness of the titanium oxide layer increased with surface treatment, with a significant reduction of Al and V concentration. Acid treated implant removal torque was larger than without treatment. The implants/bone interface of acid treated implants showed dense adhered Ca/P particles with spreading osteoblasts after 4 weeks and newly formed bone trabeculae after 8 weeks. Analysis of rabbit blood that received treated implant showed lower Al and V contents at all times. Acid treatment improved surface morphology and mechanical stability, which allowed initial events of osseointegration, while Al-V ion release was reduced. GRAPHICAL ABTSRACT.

Citation D.J. Fernandes; R.G. Marques; C.N. Elias.Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications.. J Mater Sci Mater Med. 2017;28(10):164. doi:10.1007/s10856-017-5977-5

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Related Forms & Applications