Intrinsic Phonon Bands in High-Quality Monolayer T' Molybdenum Ditelluride.

Title Intrinsic Phonon Bands in High-Quality Monolayer T' Molybdenum Ditelluride.
Authors S.Y. Chen; C.H. Naylor; T. Goldstein; A.T.Charlie Johnson; J. Yan
Journal ACS Nano
DOI 10.1021/acsnano.6b07260
Abstract

The topologically nontrivial and chemically functional distorted octahedral (T') transition-metal dichalcogenides (TMDCs) are a type of layered semimetal that has attracted significant recent attention. However, the properties of monolayer (1L) T'-TMDC, a fundamental unit of the system, are still largely unknown due to rapid sample degradation in air. Here we report that well-protected 1L CVD T'-MoTe2 exhibits sharp and robust intrinsic Raman bands, with intensities about 1 order of magnitude stronger than those from bulk T'-MoTe2. The high-quality samples enabled us to reveal the set of all nine even-parity zone-center optical phonons, providing reliable fingerprints for the previously elusive crystal. By performing light polarization and crystal orientation resolved scattering analysis, we can effectively distinguish the intrinsic modes from Te-metalloid-like modes A (?122 cm(-1)) and B (?141 cm(-1)), which are related to the sample degradation. Our studies offer a powerful nondestructive method for assessing sample quality and for monitoring sample degradation in situ, representing a solid advance in understanding the fundamental properties of 1L-T'-TMDCs.

Citation S.Y. Chen; C.H. Naylor; T. Goldstein; A.T.Charlie Johnson; J. Yan.Intrinsic Phonon Bands in High-Quality Monolayer T' Molybdenum Ditelluride.. ACS Nano. 2016. doi:10.1021/acsnano.6b07260

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Related Forms & Applications