Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.

Title Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.
Authors M. Lau; P.M. Young; D. Traini
Journal AAPS PharmSciTech
DOI 10.1208/s12249-016-0708-7
Abstract

The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.

Citation M. Lau; P.M. Young; D. Traini.Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.. AAPS PharmSciTech. 2017;18(6):22482259. doi:10.1208/s12249-016-0708-7

Related Elements

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications