Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications.

Title Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications.
Authors Y. Liang; D.G. Liu; W.Q. Bai; J.P. Tu
Journal Colloids Surf B Biointerfaces
DOI 10.1016/j.colsurfb.2017.02.010
Abstract

Silicon-contained CNx nanocomposite films were prepared using the ion beam assisted magnetron sputtering under different nitrogen gas pressure. With increase of the nitrogen pressure, silicon and nitrogen content of the CNx films drastically increase, and is saturated as the PN2 reach about 40%. Surface roughness and the contact angle are increase, while the friction coefficient decreased. The CNx film with 5.7at.% Si content possess the lowest friction coefficient of only 0.07, and exhibited the best tribological properties. The impact of CNx films with different silicon content on the growth and the activation of osteoblasts were compared to that of Ti6Al4V. The incorporation of silicon in the CNx film also showed an increase cell adhesion. Bonding structure and surface energy were determined to be the factors contributing to the improved biocompatibility. Macrophages attached to 5.7at.% Si contained CNx films down regulated their production of cytokines and chemokines. Moreover, employed with Si contained CNx coated joint replacements, which were implanted subcutaneously into Sprague-Dawley mice for up to 36days, the tissue reaction and capsule formation was significantly decreased compared to that of Ti6Al4V. A mouse implantation study demonstrated the excellent in vivo biocompatibility and functional reliability of wear resist layer for joint replacements with a Si doped a-CNx coating for 36days.

Citation Y. Liang; D.G. Liu; W.Q. Bai; J.P. Tu.Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications.. Colloids Surf B Biointerfaces. 2017;153:4151. doi:10.1016/j.colsurfb.2017.02.010

Related Elements

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications