[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6

CAS #:

Linear Formula:

C36H16F22IrN4P

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6
IR-OMX-01-C
Pricing > SDS > Data Sheet >

[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6 Properties (Theoretical)

Compound Formula C36H16F22IrN4P
Molecular Weight 1145.69
Appearance Yellow crystalline solid or powder
Melting Point >300 °C
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass 1145.69
Monoisotopic Mass 1145.69

[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6 Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information NONH for all modes of transport
WGK Germany 3
MSDS / SDS

About [Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6

[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6, also known as [5,5′-Bis(trifluoromethyl)-2,2′-bipyridine-N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate, is an organometallic Iridium(III) complex used as photocatalyst. Organometallics are useful reagents, catalysts, and precursor materials with applications in thin film deposition, industrial chemistry, pharmaceuticals, LED manufacturing, and others. American Elements supplies organometallic compounds in most volumes including bulk quantities and also can produce materials to customer specifications. Most materials can be produced in high and ultra high purity forms (99%, 99.9%, 99.99%, 99.999%, and higher) and to many standard grades when applicable including Mil Spec (military grade), ACS, Reagent and Technical Grades, Pharmaceutical Grades, Optical, Semiconductor, and Electronics Grades. Please request a quote above for more information on pricing and lead time.

[Ir(dFCF3ppy)2-(5,5’-dCF3bpy)]PF6 Synonyms

[5,5'-Bis(trifluoromethyl)-2,2'-bipyridine-κN,κN]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κN]phenyl] iridium hexafluorophosphate, [5,5′-Bis(trifluoromethyl)-2,2′-bipyridine-N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate

Chemical Identifiers

Linear Formula C36H16F22IrN4P
MDL Number N/A
EC No. N/A
Pubchem CID 134159247
IUPAC Name N/A
SMILES [Ir+3].F[C-]1C=C(F)[CH]=[C]=[C]1c2ccc(cn2)C(F)(F)F.F[C-]3C=C(F)[CH]=[C]=[C]3c4ccc(cn4)C(F)(F)F.F[P-](F)(F)(F)(F)F.c5ccc(nc
InchI Identifier InChI=1S/2C12H5F5N.C10H8N2.F6P.Ir/c2*13-8-2-3-9(10(14)5-8)11-4-1-7(6-18-11)12(15,16)17;1-3-7-11-9(5-1)10-6-2-4-8-12-10;1-7(2,3,4,5)6;/h2*1-2,4-6H;1-8H;;/q2*-1;;-1;+3
InchI Key ZCNUFCYLERNPGN-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Fluorine

Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.

Iridium

See more Iridium products. Iridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2. Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals.Elemental Iridium It is the most corrosion resistant metal known and is the second-densest element (after osmium). It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Recent Research

TODAY'S TOP DISCOVERY!

November 21, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions