Label-free surface plasmon resonance biosensing with titanium nitride thin film.

Title Label-free surface plasmon resonance biosensing with titanium nitride thin film.
Authors G. Qiu; S.Pang Ng; C.M.Lawrence Wu
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2018.02.006
Abstract

In this report, titanium nitride thin film synthesized with reactive magneto-sputtering technique is proposed as an alternative surface plasmon resonance sensing material. The physical and chemical natures were initially studied by atomic force microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. In virtue of white-light common-path sensing system, the wavelength modulated TiN films achieved tunable evanescent plasmonic field from 573?nm to 627?nm. The optimized TiN film with 29.8?nm thickness exhibited good differential phase sensitivity (i.e. 1.932?×?10 RIU) to refractive index alteration, which is comparable to the performance of gold film. We have also attained direct measurement of biotin adsorption on the TiN and monitored sub-sequential biotin-streptavidin conjugation. It was found that TiN films have significantly higher binding affinity toward biotin than that of gold in experiments, so we are able to detect biotin directly to 0.22?µg/ml (0.90?µM) in label-free manner. The adsorption mechanism of biotin on TiN(200) are also explored with periodic density functional theory (DFT) via computer simulation and it was found that the exceptional biotin-TiN affinity may be due to the stacking formation of both N-Ti and O-Ti bonds. Also, the adsorption energy of biotin-TiN was found to be -?1.85?eV, which was two times higher than that of biotin-gold. Both experimental and computational results indicate, for the first time, that the TiN film can be directly functionalized with biotin molecules, thus it serves as an alternative plasmonic material to existing gold-based SPR biosensors.

Citation G. Qiu; S.Pang Ng; C.M.Lawrence Wu.Label-free surface plasmon resonance biosensing with titanium nitride thin film.. Biosens Bioelectron. 2018;106:129135. doi:10.1016/j.bios.2018.02.006

Related Elements

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications