Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins.

Title Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins.
Authors S.Zohreh Mirahmadi-Zare; F. Aboutalebi; M. Allafchian; L. Pirjamali; M.H. Nasr-Esfahani
Journal Protein Expr Purif
DOI 10.1016/j.pep.2017.10.015
Abstract

Magnetic nanoparticles NiFe2O4 was synthesized and covered in the silicate lattice of (3-Aminopropyl) triethoxysilane (APS) by the sol-gel process. Subsequently, the EDTA-dianhydride was attached to the amino surface of magnetic nanoparticles (MNPs) during the nucleophilic attack. This polycarboxylic layer trapped the high level of nickel ions for selective bonding to the His-tagged recombinant protein. The surface of MNPs was investigated by TEM, XRD, SEM (EDSA), VSM, BET, FT-IR and zeta potential analysis which characterized the size, chemical lattice, morphology, magnetic strength, specific surface area, functional groups and charge of the surface of nanoparticles. The performance and validity of the nanoparticles were studied by the purification of His-tagged green fluorescence protein (His-GFP). Also, the safety of proposed Ni-MNPs in the purification procedure of His-tagged proteins for pharmaceutical applications was proved by the determination of the nickel leakage level in the purified final protein using atomic absorption spectroscopy. In vitro cytotoxicity of Ni-MNPs and trace metal ions was investigated by the MTS assay technique. In addition, the comparison of biological activity in purified protein (GM-CSF) and commercial sample did not show any toxic effect.

Citation S.Zohreh Mirahmadi-Zare; F. Aboutalebi; M. Allafchian; L. Pirjamali; M.H. Nasr-Esfahani.Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins.. Protein Expr Purif. 2018;143:7176. doi:10.1016/j.pep.2017.10.015

Related Elements

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications