Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.

Title Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.
Authors H. Jin; P. Afiuny; S. Dove; G. Furlan; M. Zakotnik; Y. Yih; J.W. Sutherland
Journal Environ Sci Technol
DOI 10.1021/acs.est.7b05442
Abstract

Neodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk. This paper assesses the environmental footprint of NdFeB magnet-to-magnet recycling by directly measuring the environmental inputs and outputs from relevant industries and compares the results with production from "virgin" materials, using life cycle assessments. It was found that magnet-to-magnet recycling lowers environmental impacts by 64-96%, depending on the specific impact categories under investigation. With magnet-to-magnet recycling, key processes that contribute 77-95% of the total impacts were identified to be (1) hydrogen mixing and milling (13-52%), (2) sintering and annealing (6-24%), and (3) electroplating (6-75%). The inputs from industrial sphere that play key roles in creating these impacts were electricity (24-93% of the total impact) and nickel (5-75%) for coating. Therefore, alternative energy sources such as wind and hydroelectric power are suggested to further reduce the overall environmental footprint of NdFeB magnet-to-magnet recycling.

Citation H. Jin; P. Afiuny; S. Dove; G. Furlan; M. Zakotnik; Y. Yih; J.W. Sutherland.Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.. Environ Sci Technol. 2018. doi:10.1021/acs.est.7b05442

Related Elements

Neodymium

See more Neodymium products. Neodymium (atomic symbol: Nd, atomic number: 60)is a Block F, Group 3, Period 6 element with an atomic weight of 144.242. Neodymium Bohr ModelThe number of electrons in each of Neodymium's shells is 2, 8, 18, 22, 8, 2 and its electron configuration is [Xe] 4f4 6s2. The neodymium atom has a radius of 181 pm and a Van der Waals radius of 229 pm. Neodymium was first discovered by Carl Aer von Welsbach in 1885. In its elemental form, neodymium has a silvery-white appearance. Neodymium is the most abundant of the rare earths after cerium and lanthanum. Neodymium is found in monazite and bastnäsite ores. It is used to make high-strength neodymium magnets and laser crystal substances like neodymium-doped yttrium aluminum garnet (also known as Nd:YAG). The name originates from the Greek words neos didymos, meaning new twin.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.