Skip to Page Content

Lithium Coins

High Purity Li Coins
CAS 7439-93-2


Product Product Code Request Quote
(2N) 99% Lithium Coins LI-M-02-BCN Request Quote
(3N) 99.9% Lithium Coins LI-M-03-BCN Request Quote
(4N) 99.99% Lithium Coins LI-M-04-BCN Request Quote
(5N) 99.999% Lithium Coins LI-M-05-BCN Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Li 7439-93-2 24873303 3028194 MFCD00134051 231-102-5 N/A [Li] InChI=1S/Li WHXSMMKQMYFTQS-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
6.941 Silvery White 0.534 gm/cc N/A 180.54°C 1342°C 0.848 W/cm/K @ 298.2 K 8.55 microhm-cm @ 0 °C 1.0 Paulings 0.85 Cal/g/K @ 25°C 32.48 K-Cal/gm atom at 1342°C 1.10 Cal/gm mole Safety Data Sheet

American Elements' AE Bullion™ group mints certified high purity Lithium Coins from laboratory certified engineered materials with properties applicable to chemical vapor deposition (CVD) for thin film and laboratory standard impurity levels for short and long term physical possession and to allow for exposure and controlled risk to industrial demand fluctuations reflected in the global lithium price. Coins are manufactured and minted under written SOPs (standard operating procedures) to assure quality and consistency by American Elements' AE Metals™ High Purity (99.99%) Metallic Coinscustom synthesis and refining group. Besides lithium coins, lithium bars and lithium Ingots may be purchased by funds, currency reserves, exchange-traded funds (ETFs), private investors, collectors and hobbyists to take direct physical title and possession of the metal with risk exposure from shortages or chemical/physical technology changes, such as in solar energy, and fuel cell developments, equivalent to movements in the Etching of Medieval Minting Equipment and Processesindustrial application price of Lithium. American Elements offers bonded short and long term warehouse inventory services for AE Bullion™ coins to investors, funds and collectors who do not wish to take physical custody of the metal or lack secure storage or warehouse capabilities. The lowest possible coin unit price to Lithium melt value ratio is maintained through state of the art mint and die systems and analytically certified rounds (planchet or flan) refined and pressed to exacting purity and weight. We also produce Lithium as rod, pellets, powder, pieces, disc, granules, and wire, as nanoparticles and in compound forms, such as oxide. Lithium Coins may be purchased in bulk or small quantity. Portfolios of different elemental metal coins or bars may also be structured and purchased from the AE Bullion™ group allowing for strategic risk allocation and indexing across a basket of metals.

Lithium Bohr ModelLithium (Li) atomic and molecular weight, atomic number and elemental symbolLithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife; its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics. For more information on lithium, including properties, safety data, research, and American Elements' catalog of lithium products, visit the Lithium element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H260-H314
F,C
14/15-34
8-43-45
OJ5540000
UN 1415 4.3/PG 1
2
Corrosion-Corrosive to metals Flame-Flammables      

CUSTOMERS FOR LITHIIUM COINS HAVE ALSO LOOKED AT
Lithium Cobalt Phosphate Lithium Chloride Lithium Nitrate Lithium Pellets a href="linmf.html">Lithium Foil
Lithium Nanoparticles Lithium Wire Lithium Powder Lithium Sputtering Target Lithium Germanium Oxide
Lithium Acetate Lithium Acetylacetonate Lithium Metal Lithium Oxide Lithium Oxide Pellets
Show Me MORE Forms of Lithium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Lithium

  • Acute cardiomyopathy precipitated by lithium: is there a direct toxic effect on cardiac myocytes? A case report and review of literature.. Anantha Narayanan M, Mahfood Haddad T, Bansal O, Baskaran J, Azzouz MS, Akinapelli A, Esterbrooks DJ.. Am J Emerg Med. 2015 Apr 18.
  • Circadian activation of the hypothalamic-pituitary-adrenal axis May affect central, but not peripheral, effect of lithium in conditioned taste aversion learning in rats.. Kim YS, Bae Yoo S, Ryu V, Kim KN, Kim BT, Lee JH, Won Jahng J.. Eur J Pharmacol. 2015 May 20.
  • A Lithium Amide Protected Against Protonation in the Gas Phase: Unexpected Effect of LiCl.. Lesage D, Barozzino-Consiglio G, Duwald R, Fressign√© C, Harrison-Marchand A, Faull KF, Maddaluno J, Gimbert Y.. J Org Chem. 2015 May 21.
  • Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies.. Abdelghany AM, ElBatal HA, EzzElDin FM.. Spectrochim Acta A Mol Biomol Spectrosc. 2015 May 8
  • TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery.. Huang H, Feng T, Gan Y, Fang M, Xia Y, Liang C, Tao X, Zhang W.. ACS Appl Mater Interfaces. 2015 May 19.
  • Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J, Amine K. Nanoscale. 2015 Apr 13. : Nanoscale
  • The iNOS/Src/FAK axis contributes to lithium chloride-mediated macrophage migration. Chen HC, Chien WC, Chang MY, Hsieh MY, Lai M, Maa MC, Leu TH. Nitric Oxide. 2015 Apr 10.: Nitric Oxide
  • Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures towards High-Performance Lithium-Ion Batteries. Wang JG, Zhang C, Kang F. ACS Appl Mater Interfaces. 2015 Apr 14. : ACS Appl Mater Interfaces
  • In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AW, Yan Q, Wei J, Chen Z. Adv Mater. 2015 Apr 9.: Adv Mater
  • Sandwich-Structured Graphene-Fe3O4-Carbon Nanocomposites for High-Performance Lithium-Ion Batteries. Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F. ACS Appl Mater Interfaces. 2015 Apr 17. : ACS Appl Mater Interfaces