Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries.

Title Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries.
Authors Y. Cao; D. Chai; Z. Luo; M. Jiang; W. Xu; C. Xiong; S. Li; H. Liu; D. Fang
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.03.002
Abstract

With a theoretically high capacity and suitable discharge/charge plateaus, lithium vanadates (such as Li0.04V2O5) can be used as cathode material for lithium ion batteries. Herein, Li0.04V2O5 nanowires are densely anchored onto reduced graphene oxide (rGO) nanosheets to form a Li0.04V2O5@rGO nanocomposite by a hydrothermal method with subsequent thermal treatment. Due to this unique structure, the Li0.04V2O5@rGO exhibits remarkable rate performance and excellent cycling stability. Specifically, it delivers a reversible discharge capacity of 738.09mAhg(-1) at a current density of 100mAg(-1) in the voltage range of 2.0-4.0V. After 500 cycles, it still maintains a high capacity of 731.70mAhg(-1), which represents 95.01% retention of the original reversible capacity. These results indicate that the Li0.04V2O5@rGO could be a promising candidate as cathode active material for long-term cycling performance in lithium-ion batteries.

Citation Y. Cao; D. Chai; Z. Luo; M. Jiang; W. Xu; C. Xiong; S. Li; H. Liu; D. Fang.Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries.. J Colloid Interface Sci. 2017;498:210216. doi:10.1016/j.jcis.2017.03.002

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Vanadium

See more Vanadium products. Vanadium (atomic symbol: V, atomic number: 23) is a Block D, Group 5, Period 4 element with an atomic weight of 50.9415. Vanadium Bohr ModelThe number of electrons in each of Vanadium's shells is 2, 8, 11, 2 and its electron configuration is [Ar] 3d3 4s2. The vanadium atom has a radius of 134 pm and a Van der Waals radius of 179 pm. Vanadium was discovered by Andres Manuel del Rio in 1801 and first isolated by Nils Gabriel Sefström in 1830. In its elemental form, vanadium has a bluish-silver appearance. Elemental VanadiumIt is a hard, ductile transition metal that is primarily used as a steel additive and in alloys such as Titanium-6AL-4V, which is composed of titanium, aluminum, and vanadium and is the most common titanium alloy commercially produced. Vanadium is found in fossil fuel deposits and 65 different minerals. Vanadium is not found free in nature; however, once isolated it forms an oxide layer that stabilizes the free metal against further oxidation. Vanadium was named after the word "Vanadis" meaning goddess of beauty in Scandinavian mythology.

Related Forms & Applications